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A phenomenon of reflection of plane waves from a thermally insulated surface of a solid
half-space is studied in context of Lord-Shulman theory of generalized thermo-viscoelasti-
city with voids. The governing equations of generalized thermo-viscoelastic medium with
voids are specialized in x-z plane. The plane wave solution of these equations shows the
existence of three coupled longitudinal waves and a shear vertical wave in a generalized
thermo-viscoelastic medium with voids. For incident plane wave (longitudinal or shear),
three coupled longitudinal waves and a shear vertical wave reflect back in the medium.
The mechanical boundary conditions at free surface of solid half-space are considered as
impedance boundary conditions, in which the shear force tractions are assumed to vary
linearly with the tangential displacement components multiplied by the frequency. The
impedance corresponds to the constant of proportionality. The appropriate potentials
of incident and reflected waves in the half-space will satisfy the required impedance
boundary conditions. A non-homogeneous system of four equations in the amplitude
ratios of reflected waves is obtained. These amplitude ratios are functions of material
parameters, impedance parameter, angle of incidence, thermal relaxation and speeds of
plane waves. Using relevant material parameters for medium, the amplitude ratios are
computed numerically and plotted against certain ranges of impedance parameter and
the angle of incidence.

Keywords: Generalized thermo-viscoelastcity, voids, thermal relaxation, plane waves,
reflection, amplitude ratios.

1. Introduction

Cowin and Nunziato [1] developed the theory of elastic material with voids. Iesan
[2, 3] developed the theory of thermoelastic material with voids. Various dynamical
problems and plane strain problems in theory of elasticity and thermoelasticity
with voids have been appeared in literature. For example, Iesan [4], Ciarletta and
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Scalia [5], Chirita and Scalia [6], Chirita et al. [7], Iesan and Nappa [8], Chirita and
D’Apice [9, 10] and Ciarletta et al. [11] have studied various outstanding dynamical
problems in theory of thermoelasticity with voids. Various problems on plane wave
propagation in elasticity and thermoelasticity with voids were also studied. For
example, Puri and Cowin [12], Chandrasekharaiah [13, 14], Singh [15], Ciarletta
and Straughan [16], Ciarletta, et al. [17] and Bucur et al. [18].

Iesan [19, 20] developed theories of thermoviscoelastic materials with voids by
incorporating the memory effects. Some problems on waves and vibrations in
thermoviscoelastic material with voids were studied by Sharma and Kumar [21],
Svanadze [22], Tomar et al. [23], Chirita [24], Chirita and Danescu [25], D’Apice
and Chirita [26] and Bucur [27]. Exploring various problems on wave propagation
in thermoviscoelastic materials with voids is useful in civil engineering, seismology,
nano-technology and bio-materials [28]. In the present paper, we consider a gener-
alized thermoviscoelastic solid half-space with voids, whose surface is subjected to
impedance boundary conditions as in Godoy [29], where the tangential components
of stress tensor depends linearly on tangential displacement components times fre-
quency, respectively. A problem on reflection of plane (longitudinal or shear) wave in
a generalized thermoviscoelastic medium with voids under these impedance bound-
ary conditions is considered. The reflection coefficients (or amplitude ratios) of
various reflected waves are analysed numerically to show the dependence on angle
of incidence, viscous, thermal and voids parameters and impedance parameters.

2. Basic equations

Following Iesan [19] and Lord and Shulman [30], the system of field equations for
isotropic and homogeneous generalized thermoviscoelastic porous solid in absence
of body forces and heat sources are:
(a) the equations of motion:

tsr,s = ϱür (1)

Hr,r + g = ϱK∗ϕ̈ (2)

(b) the energy equation:

ϱT0η̇ = Qr,r (3)

(c) the constitutive equations:

trs = λ0emmδrs + 2µ0ers + b0ϕδrs − βTδrs (4)

Hr = α0ϕ,r + τ∗T,r (5)

g = −b0emm − ξ0ϕ+mT (6)

ϱη = βemm + aT +mϕ (7)



Reflection of Plane Waves from Surface of a Generalized ... 1485

Qr + τ0Q̇r = κT,r + ζϕ̇,r (8)

ers =
1

2
(ur,s + us,r) (9)

Using equations (4) to (9) in equations (1) to (3), we can obtain following equations:

µ0us,rr + (λ0 + µ0)um,ms + b0ϕ,s − βT,s = ϱüs (10)

α0ϕ,rr − γ0ur,r − ξ0ϕ+ τ∗T,rr +mT = ϱK∗ϕ̈ (11)

κT,rr + ζϕ̇,rr = βT0(u̇r,r + τ0ür,r) +mT0(ϕ̇+ τ0ϕ̈) + Ce(Ṫ + τ0T̈ ) (12)

where the following notations are used:

Ce = aT0, λ0 = λ+ λ∗
∂

∂t
, µ0 = µ+ µ∗ ∂

∂t
, b0 = b+ b∗

∂

∂t
, α0 = α+ α∗ ∂

∂t
,

γ0 = b+ γ∗
∂

∂t
, ξ0 = ξ + ξ∗

∂

∂t
.

and trs are the components of the stress tensor, Hr are the components of the
equilibrated stress vector, g is the intrinsic equilibrated body force, η is the entropy
per unit mass, Qr are the components of the heat flux vector, ers are the components
of the strain tensor, ϱ is the mass density of the medium, K∗ is the equilibrated
inertia, ur are the components of the displacement vector, ϕ is the void volume
fraction, θ is the change in temperature from the constant reference temperature T0
and δrs are the components of the Kronecker delta,λ and µ are well known Lame’s
constant parameters, b, α, ξ and ξ∗ are the constant parameters corresponding
to voids present in the medium, β, τ∗, m, κ, ζ and a are the constant thermal
parameters and λ∗, µ∗, b∗, α∗ and γ∗ are the constant viscoelastic parameters, τ0
is thermal relaxation time.
Equations (10) to (12) are specialized in x-z plane as:

µ0(u1,11 + u1,33) + (λ0 + µ0)(u1,11 + u3,31) + b0ϕ,1 − βT,1 = ϱü1 (13)

µ0(u3,11 + u3,33) + (λ0 + µ0)(u1,13 + u3,33) + b0ϕ,3 − βT,3

= ϱü3α0(ϕ,11 + ϕ,33)− γ0(u1,1 + u3,3)− ξ0ϕ+ τ∗(T,11 + T,33) +mT (14)

= ϱK∗ϕ̈

κ(T,11 + T,33) + ζ(ϕ̇,11 + ϕ̇,33)− βT0{(u̇1,1 + u̇3,3) + τ0(ü1,1 + ü3,3)}
−mT0(ϕ̇+ τ0ϕ̈)− Ce(Ṫ + τ0T̈ ) = 0 (15)

Using the following Helmholtz representations of displacement components in terms
of potentials:

u1 =
∂q

∂x
− ∂ψ

∂z
, u3 =

∂q

∂z
+
∂ψ

∂x
(16)
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the equations (13) to (16) result into the following equations:

µ0(
∂2ψ

∂x2
+
∂2ψ

∂z2
) = ϱψ̈ (17)

(λ0 + 2µ0)(
∂2q

∂x2
+
∂2q

∂z2
) + b0ϕ− βT = ϱq̈ (18)

α0(
∂2ϕ

∂x2
+
∂2ϕ

∂z2
)− γ0(

∂2q

∂x2
+
∂2q

∂z2
)− ξ0ϕ+ τ∗(

∂2T

∂x2
+
∂2T

∂z2
) +mT = ϱK∗ϕ̈ (19)

κ(
∂2T

∂x2
+
∂2T

∂z2
) + ζ(

∂2ϕ̇

∂x2
+
∂2ϕ̇

∂z2
)− βT0{(

∂2q̇

∂x2
+
∂2q̇

∂z2
) + τ0(

∂2q̈

∂x2
+
∂2q̈

∂z2
)}

−mT0(ϕ̇+ τ0ϕ̈)− Ce(Ṫ + τ0T̈ ) = 0 (20)

We seek the plane wave solutions of equations (18) to (21) of the following form:

{q, ϕ, T, ψ} = {A,B,C,D}exp[ik(sin θx+ cos θz − V t)] (21)

where A,B,C,D and E are arbitrary constants. k is the wavenumber, V is the
complex phase speed and θ is the angle of propagation. With the help of (22), the
non-trivial plane wave solution of equation (18) leads to:

V 2 =
µ0

ρ
(22)

which is the speed of shear vertical (SV ) wave.
With the help of (22) the plane wave solutions of equations (19) to (21) lead to
following cubic velocity equation:

(
1− ξ̄0
ϱ

− ϵ2m̄)Γ3 − [κ̄(1− ξ̄0) +
c2
ϱ

+ ϵ3c3 + ϵ3m̄+
c1(1− ¯ξ0)

ϱ
− ϵ2c1m̄+

b0γ̄0
ϱ

+ϵ1b0m̄+ βγ0ϵ2 + βϵ1(1− ξ̄0)]Γ
2 + [κ̄c2 − ϵ3c3 + κ̄c1(1− ξ̄0) +

c1c2
ϱ

(23)

−c1c3ϵ3 + c1m̄ϵ3 + b0γ̄0κ̄− b0c3ϵ1 − βϵ3γ̄0 + βc2ϵ1]Γ− (c1c2κ̄− c1c3ϵ3) = 0

where:

Γ = ϱv2, c1 = λ0 + 2µ0, c2 =
α0

K∗ , c3 = − τ∗

K∗ , ϵ1 =
βT0
ϱCe

,

ϵ2 =
mT0
ϱCe

, ϵ3 =
ζ∗ω2

Ce
, κ̄ =

κ

Ce(τ0 +
i
ω )
, γ̄0 =

γ0
ϱK∗ω2

,

m̄ =
m

ϱK∗ω2
, ξ̄0 =

ξ0
ϱK∗ω2

, ζ∗ =
iζ

ω(τ0 +
i
ω )
.

The real parts of the roots of cubic velocity equation (24) correspond to the speeds
of three coupled longitudinal (P1, P2 and P3) waves.
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Figure 1 Reflection of plane waves at a stress-free surface of a poro-thermo-viscoelastic solid
half-space

3. Reflection from a plane surface

We consider a half-space of a generalized thermoviscoelastic medium with voids.
The plane surface of the half-space is taken along the x-axis. The negative z-axis
is taken as normal into the half-space as shown in Figure 1. Following Godoy
et al. [29], we assume that the surface of half-space is subjected to impedance
boundary conditions, where the tangential tractions are proportional to tangential
displacement components time frequency, respectively. Therefore, in the present
problem, the impedance boundary conditions at z = 0 are expressed as:

t33 = 0, t31 + ωZu1 = 0, H3 = 0, Q3 = 0, (24)

where: t33 = λ0(e11 + e33) + 2µ0e33 + b0ϕ − βT, t31 = 2µ0e31, Q3 = κ
∂T

∂z
+

ζ
∂ϕ̇

∂z
, H3 = α0

∂ϕ

∂z
+ τ∗

∂T

∂z
and ω is frequency of wave and Z is impedance param-

eters of dimension stress/velocity, which is assumed strictly real. For Z = 0, the
impedance boundary conditions reduce to traction-free boundary conditions and
|Z| → +∞ corresponds to vanishing of tangential component of displacement vec-
tor. For an incident P1 or SV wave at plane surface z = 0, the reflected P1, P2, P3

and SV waves propagate in the half-space (z < 0). The appropriate potentials for
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incident and reflected waves in the half-space are:

q = A0 exp{ik1(x sin θ0 + z cos θ0 − v1t)}

+
3∑

j=1

Aj exp{ikj(x sin θj − z cos θj − vjt)} (25)

ϕ = p1A0 exp{ik1(x sin θ0 + z cos θ0 − v1t)}

+

3∑
j=1

pjAj exp{ikj(x sin θj − z cos θj − vjt)} (26)

T = q1A0 exp{ik1(x sin θ0 + z cos θ0 − v1t)}

+
3∑

j=1

qjAj exp{ikj(x sin θj − z cos θj − vjt)} (27)

ψ = B0 exp{ik4(x sin θ0 + z cos θ0 − v4t)}
+B1 exp{ik4(x sin θ4 − z cos θ4 − v4t)} (28)

where vi = Re(Vi), (i = 1, 2, ., 4) and the expression for
pj
k2j
,
qj
k2j
, (j = 1, 2, 3) are

given as:

pj
k2j

=
(τ∗ − m

k2
j
)(λ0 + 2µ0 − ϱv2j ) +

βγ0

k2
2

b0(τ∗ − m
k2
j
) + β(α0 +

ξ0
k2
j
− ϱK∗v2j )

qj
k2j

=
−(α0 +

ξ0
k2
j
− ϱK∗v2j )(λ0 + 2µ0 − ϱv2j ) +

b0γ0

k2
2

b0(τ∗ − m
k2
j
) + β(α0 +

ξ0
k2
j
− ϱK∗v2j )

The potentials given in equations (26) to (29) satisfy boundary conditions (25) if
following relations ( Snell’s law for present problem) hold:

sin θ0
v1 or v4

=
sin θ1
v1

=
sin θ2
v2

=
sin θ3
v3

=
sin θ4
v4

(29)

k1v1 = k2v2 = k3v3 = k4v4 (30)

and:
(a) incident P wave:

4∑
j=1

aijZj = bi, (i = 1, 2, ., 4) (31)

where: Zj =
Aj

A0
, (j = 1, 2, 3) and Z4 =

B1

A0
are reflection coefficients of reflected

P1, P2, P3 and SV waves, and: b1 = −1, b2 = −1, b3 = 1, b4 = 1,

a1j =
(v1

vj
)2[(λ− iwλ∗) + 2(µ− iwµ∗)(1− (

vj

v1
)2 sin2 θ0)− (b− iwb∗)

pj

k2
j
+ β

qj
k2
j
]

(λ− iwλ∗) + 2(µ− iwµ∗) cos2 θ0 − (b− iwb∗) p1

k2
1
+ β q1

k2
1
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a14 = −
2(µ− iwµ∗)v1v4 sin θ0

√
1− (v4

v1
)2 sin2 θ0

(λ− iwλ∗) + 2(µ− iwµ∗) cos2 θ0 − (b− iwb∗) p1

k2
1
+ β q1

k2
1

a2j = (
v1
vj

)[
2
√
1− (

vj

v1
)2 sin2 θ0 + iZj

−2 cos θ0 + iZ1
], Zj =

vjZ

µ− iωµ∗ , (j = 1, 2, 3)

a24 = (
v1
v4

)2[
1− 2(v4v1 )

2 sin2 θ0 + iZ4

√
1− (v4v1 )

2 sin2 θ0

sin θ0(−2 cos θ0 + iZ1)
], Z4 =

v4Z

µ− iωµ∗

a3j =
(v1

vj
)(wpjζ + iqjκ)

√
1− (

vj
v1
)2 sin2 θ0

(wp1ζ + iq1κ) cos θ0
, (j = 1, 2, 3), a34 = 0,

a4j =
(v1

vj
)[(α− iwα∗)pj + τ∗qj ]

√
1− (

vj
v1
)2 sin2 θ0

[(α− iwα∗)p1 + τ∗q1] cos θ0
, (j = 1, 2, 3), a44 = 0

(b) incident SV wave:

4∑
j=1

cijYj = di, (i = 1, 2, ., 4) (32)

where

Yj =
Aj

B0
(j = 1, 2, 3) and Y4 =

B1

B0
are reflection coefficients of reflected P1, P2, P3

and SV waves, and d1 = −1, d2 = −1, d3 = 0, d4 = 0,

c1j =
(v4vj

)2[(λ− iwλ∗) + 2(µ− iwµ∗)[1− (
vj
v4
)2 sin2 θ0]− (b− iwb∗)

pj

k2
j
+ β

qj
k2
j
]

(µ− iwµ∗) sin 2θ0
,

c14 = −1

c2j = sin θ0(
v4
vj

)[
2
√

1− (
vj
v4
)2 sin2 θ0 + iZj

1− 2 sin2 θ0 − iZ4 cos θ0
], (j = 1, 2, 3),

c24 =
1− 2 sin2 θ0 + iZ4 cos θ0

1− 2 sin2 θ0 − iZ4 cos θ0
,

c3j = (
v4
vj

)(wζpj + iκqj)

√
1− (

vj
v4

)2 sin2 θ0, (j = 1, 2, 3), c34 = 0,

c4j = (
v4
vj

)[(α− iwα∗)pj + τ∗qj ]

√
1− (

vj
v4

)2 sin2 θ0, (j = 1, 2, 3), c44 = 0.

4. Numerical results and discussion

To get an idea about the dependence of amplitude ratios of various reflected waves
on angle of incidence, impedance parameter and other material parameters, the
copper is treated as a thermoviscoelastic material with voids. The following physi-
cal constants of copper material are considered:
λ = 7.76× 1011 dyn/cm2, µ = 3.86× 1011 dyn/cm2, ϱ = 8.954 gm/cm3,
c = 3.4303× 104 dyn/cm2 oC, b = 2× 103 dyn/cm2, α = 1.688 dyn,
β = 0.4×10−1 dyn/cm2 oC, ξ = 1.475 dyn/cm2, m = 0.2×107 dyn/cm2 oC,
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κ = 0.386× 108 dyn/s oC, T0 = 293 K, K∗ = 1.75× 10−11 cm2,
and we set:
λ∗ = 0.1 dyn s/cm2, µ∗ = 0.2 dyn s/cm2, b∗ = 0.1× 10−3 dyn s/cm2,
ξ∗ = 0.3 dyn s/cm2, α∗ = 0.1 dyn s, γ∗ = 0.5× 10−7 dyn s/cm2,
τ∗ = 0.3× 10−7 dyn/ oC, ζ = 1.5× 10−11 dyn.

Figure 2 Variations of the amplitude ratios of reflected P1, P2, P3 and SV waves against the
angle of incidence 0 of incident P1 wave when Z = -5, 0 and 5

For above values of material parameters, the non-homogeneous systems (32) and
(33) of linear equations in amplitude ratios of reflected waves are solved by using
Fortran program of Gauss elimination method. For incident P1 wave, the ampli-
tude ratios of reflected waves are plotted against the range 0o ≤ θ0 ≤ 90o of angle of
incidence in Figure 2 by solid lines, when impedance parameter Z = 0. The ampli-
tude ratios of reflected P1 wave is 0.98 at θ0 = 0o (normal incidence). It decreases
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to a value 0.6695 at θ0 = 55o and then increases to a value one at θ0 = 90o (grazing
incidence). The amplitude ratios of reflected P2 and P3 waves are very smaller
in comparison to that of P1 wave. The maximum values of the amplitude ratios
of reflected P2 and P3 waves are 0.4841e-05 and 0.4825e-05 at normal incidence.
These reduce to zero at grazing incidence. The amplitude ratios of reflected SV is
0.9742 at normal incidence and it also reduces to zero at grazing incidence. Similar
variations for impedance parameters Z = −5 and Z = 5 are also shown in Fig-
ure 2 by dashed line and dashed line with star as center symbols, respectively.
The comparison of these dashed lines with solid line shows the effect of impedance
parameter at each angle of incidence of P1 wave.

Figure 3 Variations of the amplitude ratios of reflected P1, P2, P3 and SV waves against the
impedance parameter Z for incident P1 wave when 0 = 30o, 60o and 90o
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Figure 4 Variations of the amplitude ratios of reflected P1, P2, P3 and SV waves against the
angle of incidence 0 of incident SV wave when Z = -5, 0 and 5

For incident P1 wave, the amplitude ratios of reflected waves are plotted against
the range −20 ≤ Z ≤ 20 of impedance parameter in Figure 3 by dashed line, dashed
line with squares and solid line with stars for θ0 = 30o, 60o and 90o, respectively.
The comparison of these three variations shows the effect of three different angle of
incidences in a particular range of impedance parameter. It is observed that there
is no impact of impedance at grazing incidence.
For incident SV 1 wave, the amplitude ratios of reflected waves are plotted against
the range 1o ≤ θ0 ≤ 45o of angle of incidence in Figure 4 by solid lines, when
impedance parameter Z = 0. Beyond θ0 > 45o, a phase change occurs. The am-
plitude ratios of reflected P1 wave is zero at θ0 = 1o (near normal incidence). It
increases to its maximum value 0.5472 at θ0 = 34o and then decreases sharply to its
minimum value zero at θ0 = 90o (grazing incidence). In this case also, the ampli-
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tude ratios of reflected P2 and P3 waves are observed very smaller in comparison to
that of P1 wave. The maximum values of the amplitude ratios of reflected P2 and
P3 waves are 0.7350e − 04 and 0.7355e − 04 at θ0 = 25o. These amplitude ratios
of reflected P2 and P3 waves reduce to zero at 1oand45o. The amplitude ratios of
reflected SV is one at θ0 = 1o and it reduces to 0.5416 at θ0 = 39o and increases
sharply to one at 45o. Similar variations for impedance parameters Z = −5 and
Z = 5 are also shown in Figure 4 by dashed line and dashed line with star as center
symbols, respectively. The comparison of these dashed lines with solid line shows
the effect of impedance parameter at each angle of incidence of SV wave.

Figure 5 Variations of the amplitude ratios of reflected P1, P2, P3 and SV waves against the
impedance parameter Z for incident SV wave when 0 = 15o, 30o and 45o

For incident SV wave, the amplitude ratios of reflected waves are plotted against
the range −20 ≤ Z ≤ 20 of impedance parameter in Figure 5 by dashed line, dashed
line with stars and solid line with squares for θ0 = 15o, 30o and 45o, respectively.
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The comparison of these three variations shows the effect of three different angle of
incidences in a particular range of impedance parameter. It is observed that there
is no impact of impedance at θ0 = 45o.

5. Conclusions

Plane waves in a thermoviscoelastic medium with voids is studied in context of Lord
and Shulman theory of generalized thermoelasticity. The solution of specialized go-
verning equations of medium shows the existence of three coupled longitudinal waves
(P1, P2 and P3) and a shear vertical (SV ) wave. The relations between the am-
plitude ratios of various reflected waves are obtained for incidence of both P1 and
SV waves. For a particular material representing the medium, the amplitude ratios
of the reflected waves are computed and plotted against the angle of incidence and
impedance parameter. The numerical discussion of these plots provide some vital
observations:
(i) The introduction of impedance parameter in tangential stress component changes
significantly the amplitude ratios of reflected waves for incidence of both P1 and
SV waves.
(ii) For incident P1 wave, the impedance parameter significantly changes the ampli-
tude ratios of reflected waves at each angle of incidence except grazing incidences.
From figure 2, it is also observed that the presence of impedance parameter changes
significantly the amplitude ratios of reflected shear vertical wave at normal inci-
dence and the amplitude ratios of reflected longitudinal waves remain unaffected at
normal incidence.
(iii) For incident SV wave, the impedance parameter significantly changes the am-
plitude ratios of reflected waves at each angle of incidence except at θ0 = 45o. Again
from figure 4, it is also observed that the presence of impedance parameter changes
significantly the amplitude ratios of reflected shear vertical wave at normal inci-
dence and the amplitude ratios of reflected longitudinal waves remain unaffected at
normal incidence.
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